Clustering in Additive Mixed Models with Approximate Dirichlet Process Mixtures using the EM Algorithm

نویسندگان

  • Felix Heinzl
  • Gerhard Tutz
چکیده

SUMMARY: We consider additive mixed models for longitudinal data with a nonlinear time trend. As random effects distribution an approximate Dirichlet process mixture is proposed that is based on the truncated version of the stick breaking presentation of the Dirichlet process and provides a Gaussian mixture with a data driven choice of the number of mixture components. The main advantage of the specification is its ability to identify clusters of subjects with a similar random effects structure. For the estimation of the trend curve the mixed model representation of penalized splines is used. An Expectation-Maximization algorithm is given that solves the estimation problem and that exhibits advantages over Markov chain Monte Carlo approaches, which are typically used when modeling with Dirichlet processes. The method is evaluated in a simulation study and applied to body mass index profiles of children.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clustering in linear mixed models with approximate Dirichlet process mixtures using EM algorithm

In linear mixed models, the assumption of normally distributed random effects is often inappropriate and unnecessarily restrictive. The proposed approximate Dirichlet process mixture assumes a hierarchical Gaussian mixture that is based on the truncated version of the stick breaking presentation of the Dirichlet process. In addition to the weakening of distributional assumptions, the specificat...

متن کامل

Clustering in linear mixed models with Dirichlet process mixtures using EM algorithm

SUMMARY: In linear mixed models the assumption of normally distributed random effects is often inappropriate and unnecessary restrictive. The proposed Dirichlet process mixture assumes a hierarchical Gaussian mixture. In addition to the weakening of distributions assumptions the specification allows to estimate clusters of observations with a similar random effects structure identified. An Expe...

متن کامل

Small-Variance Asymptotics for Exponential Family Dirichlet Process Mixture Models

Sampling and variational inference techniques are two standard methods for inference in probabilistic models, but for many problems, neither approach scales effectively to large-scale data. An alternative is to relax the probabilistic model into a non-probabilistic formulation which has a scalable associated algorithm. This can often be fulfilled by performing small-variance asymptotics, i.e., ...

متن کامل

Variational Learning for Finite Inverted Dirichlet Mixture Models and Its Applications

Variational Learning for Finite Inverted Dirichlet Mixture Models and Its Applications Parisa Tirdad Clustering is an important step in data mining, machine learning, computer vision and image processing. It is the process of assigning similar objects to the same subset. Among available clustering techniques, finite mixture models have been remarkably used, since they have the ability to consid...

متن کامل

Advanced mixtures for complex high dimensional data: from model-based to Bayesian non-parametric inference

Cluster analysis of complex data is an essential task in statistics and machine learning. One of the most popular approaches in cluster analysis is the one based on mixture models. It includes mixture-model based clustering to partition individuals or possibly variables into groups, block mixture-model based clustering to simultaneously associate individuals and variables to clusters, that is c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013